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Abstract

In this work, we explore two natural generalizations of the cross-polytope
locality-sensitive hashing scheme of Andoni et al. [2] from the Euclidean sphere
to arbitrary ℓp-spheres: (1) a scaled-rotation approach that rotates points via ran-
dom orthogonal matrices, reprojects them to the ℓp-sphere, and quantizes to the
dominant coordinate; and (2) a hyperoctahedral sampling approach that replaces
the orthogonal group by the symmetry group of the ℓp-sphere. We prove that both
families fail for every p ̸= 2: when p < 2 the scaled-rotation scheme allows arbi-
trarily close points to collide with vanishing probability, while for p > 2 it forces
far-apart points to collide with probability above a threshold—so no nontrivial
(r, cr)-sensitivity holds—and that the hyperoctahedral scheme induces exactly one
partition (up to relabeling), making collision probabilities independent of distance.
These negative results precisely delineate the limits of direct cross-polytope gen-
eralizations for ℓp-spheres with p ̸= 2, providing insights into the challenges of
hashing techniques in the ℓp-sphere.

1 Introduction

Approximate nearest-neighbor (ANN) search is a technique in large-scale machine learning, data
mining, and information retrieval. In high dimensions, locality-sensitive hashing (LSH) provides a
powerful framework: one designs a family of hash functions so that "nearby" points collide with
higher probability than "far apart" points, and then uses these collisions to achieve sublinear-time
queries [6]. LSH is well understood for Hamming distance and the Euclidean (ℓ2) norm: for angular
distance on the unit sphere, the cross-polytope scheme of Andoni et al. [2] achieves the asymptotically
optimal exponent

ρ =
1

2c2 − 1
,

matching known lower bounds [1]. Moreover, it is practical—empirical evaluations show substantial
speedups over classic hyperplane-based hashes in real-world datasets. Given its strong theoretical
guarantees and empirical performance on the Euclidean sphere, one might reasonably expect that
simply swapping in an ℓp-projection or replacing O(n,R) with the appropriate symmetry group for
the general ℓp-sphere would preserve locality-sensitive behavior. Surprisingly, as this paper shows,
these most natural extensions break down completely for every p ̸= 2, revealing deeper geometric
barriers to non-Euclidean LSH.

In this work we investigate two natural attempts to extend the cross-polytope LSH from the Euclidean
sphere Sn−1

2 to the general ℓp-sphere Sn−1
p :

1. Scaled-rotation: apply a random orthogonal matrix A ∈ O(n,R) to x ∈ Sn−1
p , renormalize

back to the ℓp-sphere, and then quantize to the largest-coordinate corner of the ℓ1 ball;



2. Hyperoctahedral sampling: replace O(n,R) by the symmetry group of Sn−1
p , and quantize

directly without any continuous reprojection.

Both approaches mirror the Euclidean construction, preserve the spirit of random mixing, and respect
the natural symmetries of the ℓp sphere. However, in contrast to the p = 2 case, we prove that neither
family can satisfy any nontrivial LSH sensitivity for any p ̸= 2.

Our contributions. We establish three impossibility results:

• For p < 2, the scaled-rotation scheme fails to bring nearby points into collision with non-
vanishing probability; in fact, one can exhibit pairs at arbitrarily small ℓp distance whose
collision probability tends to zero as the dimension grows.

• For p > 2, the same construction makes arbitrarily distant points collide with probability
above a threshold —again precluding any valid (r, cr)-sensitivity trade-off.

• The hyperoctahedral scheme is even more degenerate: every signed-permutation map
induces the same partition of Sn−1

p (up to relabeling), so collision probabilities become
independent of distance (either 0 or 1).

These impossibility results rule out only the most direct extensions of cross-polytope LSH to ℓp
spheres for p ̸= 2, and leave open the prospect that more sophisticated or data-adaptive hashing
schemes may still succeed in this setting.

Paper organization. In Section 2 we review LSH basics and the Euclidean cross-polytope construc-
tion. Section 3 defines the scaled-rotation and hyperoctahedral hash families on Sn−1

p , and presents
our counterexample constructions to prove the three impossibility theorems. We conclude in Section
4 with a discussion of open directions toward non-Euclidean LSH schemes.

2 Background and Related Work

Locality-Sensitive Hashing (LSH). Locality-sensitive hashing (LSH) circumvents the curse of
dimensionality in nearest-neighbor search by trading off space for query time. For a metric space
(Rn, d) and parameters r > 0, c > 1, a hash family H is (r, cr, p1, p2)-sensitive if for all x, y ∈ Rn:

Ph∼H(h(x) = h(y)) ≥ p1 whenever d(x, y) ≤ r,

Ph∼H(h(x) = h(y)) ≤ p2 whenever d(x, y) ≥ cr,

with p1 > p2. Such a family yields a data structure for (c, r)-ANN with sublinear query time [6].
Classic LSH constructions exist for Hamming space [6], Jaccard similarity [3], the Euclidean (ℓ2)
norm [2], the cosine similarity and earthmover distance via the hyperplane LSH [4], and the ℓp norm
via p-stable projections [5].

LSH for Cosine Similarity. Charikar’s hyperplane LSH [4] hashes by random sign of dot-
products, giving collision probabilities tied to cosine similarity. More recent cosine similarity
LSH schemes—most notably the cross-polytope family of Andoni et al. [2]—rotate points randomly
and quantize to the nearest vertex of an ℓ1-sphere, achieving the asymptotically optimal exponent for
angular distance. Multiprobe and fast-rotation variants further improve practical performance.

Our contributions. This work shows that two of the most natural extensions of Euclidean cross-
polytope LSH to the ℓp sphere both fail for every p ̸= 2. We analyze:

• Scaled-rotation: randomly rotate any ℓp-unit vector, project back to the ℓp sphere, then
quantize to the dominant coordinate.

• Hyperoctahedral sampling: replace continuous rotations by the finite signed-permutation
group (the hyperoctahedral group) and quantize directly.

We prove that for p < 2 the scaled-rotation scheme yields vanishing collision probability on arbitrarily
close points, and for p > 2 it forces distant points to collide with probability above a threshold; and
that the hyperoctahedral scheme induces a single degenerate partition independent of distance. These
negative results rule out only the simplest generalizations of cross-polytope hashing and leave open
the search for more sophisticated or data-adaptive LSH constructions in non-Euclidean norms.
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Figure 1: Unit ℓp-spheres for p ∈ {1, 1.5, 2, 3, 6,∞} in R2.

3 Generalized Cross-Polytope Hash Families

Let Sn−1
p be the ℓp-sphere in n-dimension. Examples of S1p for varying values of p can be found in

Figure 1. Andoni et al. [2] propose a cross-polytope LSH scheme on the Euclidean sphere Sn−1
2 .

Given a random orthogonal matrix A ∈ O(n,R), they define the hash function

hA := µ ◦ rA|Sn−1
2

: Sn−1
2 → Sn−1

1

where rA : Rn → Rn applies A to the vector x ∈ Rn and the quantizer µ : Rn \ {0} → Sn−1
1 is

given by
µ(y) = sgn(yj)ej , j = argmax

1≤k≤n
|yk|,

and ej is the j-th standard basis vector. Then we have that

H := {hA : A ∈ O(n,R)}

defines a family of hash functions.

Intuition Behind hA

The process behind hA can be understood in three simple steps:

1. Random Rotation: Multiplying by A "spins" the entire sphere. Nearby points stay close, but
their coordinates get mixed up independently of the data.

2. Dominant Axis Selection: After rotation, inspect the resulting vector y = Ax. Identify
which coordinate yj has the largest absolute value. Geometrically, this finds the single axis
along which the rotated point sticks out the most.

3. Snapping to a Corner: Record the sign of that dominant coordinate (positive or negative)
and map y exactly to the corresponding corner of the cross-polytope, namely ±ej . Figure 2
shows such a cross-polytope for n = 4. This collapses the continuous sphere onto the 2n
vertices of the ℓ1 unit sphere.

Two points with a small angle between them will, after the same random rotation, typically share
both the index and sign of their dominant coordinate, and hence collide under hA. Points far apart on
the sphere are unlikely to do so. Repeating this with multiple independent A’s yields the usual LSH
guarantees: high collision probability for similar points, low for dissimilar.

3.1 Generalization to the ℓp-Sphere

To extend this to the ℓp-sphere Sn−1
p for p ̸= 2, one can modify either the rotation or the quantization

step in hA = µ ◦ rA:

1. Scaled Rotation. Apply A ∈ O(n,R) to x ∈ Sn−1
p , then project back to the ℓp-sphere via

the scaling map
πp(y) =

y

∥y∥p
,
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Figure 2: Cross-polytope (i.e. ℓ1-sphere) for n = 4, by Robert Webb (Stella software), Wikimedia
Commons (CC BY-SA 3.0) commons.wikimedia.org/wiki/File:Schlegel_wireframe_16-cell.png.

and finally quantize with µ:
h̃A = µ ◦ πp ◦ rA.

As we show in Proposition A.1, πp is exactly the nearest-point projection onto Sn−1
p in the

ℓp norm.
2. Hyperoctahedral Sampling. Replace the full orthogonal group by the symmetry group Gp

of Sn−1
p since the orthogonal group is the symmetry group of Sn−1

2 . Then

h̄A = µ ◦ rA
for A ∈ Gp.

3.2 Scaled Hash Family

Lemma 3.1. For any p ≥ 1,
µ ◦ πp = µ.

Proof. It suffices to observe that scaling does not change the maximum absolute coordinate.

Theorem 3.2. Let p ∈ [1, 2). Then for any r ∈ (0, 2), there exists N ∈ N such that for all n ≥ N
one can find x1, . . . , xm ∈ Sn−1

p with ∥xi − xj∥p ≤ r but

PA∼Uniform(O(n,R))
(
h̃A(xi) = h̃A(xj)

)
≤ n

− r2

4−r2
+o(1)

,

implying that
PA∼Uniform(O(n,R))

(
h̃A(xi) = h̃A(xj)

)
→ 0 as n → ∞.

In particular, no fixed p1 > 0 can serve as a lower bound on the collision probability for all such
"nearby" pairs.

Proof. It suffices to find x, y ∈ Sn−1
p such that ∥x− y∥p ≤ r and PA∼U(O(n,R)(h̃A(x) = h̃A(y)) ≤

n
− r2

4−r2
+o(1). Consider v :=

(
1√
n
, . . . , 1√

n

)
∈ Rn and a := (ϵ,−ϵ, 0, . . . , 0) ∈ Rn for ϵ > 0. Then

we know that

Np := ∥v − a∥p = ∥v + a∥p =

(∣∣∣∣ 1n − ϵ

∣∣∣∣p + ∣∣∣∣ 1n + ϵ

∣∣∣∣p + n− 2

np/2

)1/p

.

Let
u±
p :=

v ± a

Np
∈ Sn−1

p .

Because u+
p − u−

p = v+a
Np

− v−a
Np

= 2a
Np

= (2ϵ,−2ϵ,0,...,0)
Np

, then

∥u+
p − u−

p ∥p =

∥∥∥∥ 2a

Np

∥∥∥∥
p

=
2(p+1)/pϵ(∣∣∣ 1√

n
− ϵ

∣∣∣p + ∣∣∣ 1√
n
+ ϵ

∣∣∣p + n−2
np/2

)1/p
.
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For p = 2,

||u+
2 − u−

2 ||2 =

∥∥∥∥ 2a√
1 + 2ϵ2

∥∥∥∥
2

=
2
√
2ϵ√

1 + 2ϵ2
.

Given r ∈ (0, 2) and n > 1, with p < 2. We want to show there exists ϵ such that ∥u+
p − u−

p ∥p ≤ r

and ∥u+
2 − u−

2 ∥2 > r. By continuity of fp(ϵ) := ∥u+
p − u−

p ∥p and because fp(ϵ) < f2(ϵ), we know
that there exists some ϵ > 0 such that ∥u+

p − u−
p ∥p ≤ r and ∥u+

2 − u−
2 ∥2 > r.

By Lemma 3.1, we know that h̃A = µ ◦ πp ◦ rA = µ ◦ rA = hA. Then applying Theorem 1 of [2] on
cross-polytope LSH gives

PA∼U(O(n,R))
(
h̃A(u

+
p ) = h̃A(u

−
p )

)
= P

(
µ(Au+

2 ) = µ(Au−
2 )

)
≤ n

− r2

4−r2
+o(1)

.

Since r ∈ (0, 2) is a fixed constant, the exponent r2

4−r2 is positive, then

Pr
(
h̃A(u

+
p ) = h̃A(u

−
p )

)
≤ n

− r2

4−r2
+o(1) −→ 0 (n → ∞).

Thus, no lower bound p1 > 0 can hold for all such "nearby" pairs, and the scaled-rotation scheme
fails to be (r, cr)-sensitive on Sn−1

p when p < 2.

Theorem 3.3. Let p ∈ (2,∞]. Then for any r ∈ (0, 2) and any c > 1, there exists N ∈ N such that
for all n ≥ N one can find x1, . . . , xm ∈ Sn−1

p with ∥xi − xj∥p ≥ cr but

PA∼Uniform(O(n,R))
(
h̃A(xi) = h̃A(xj)

)
≥ 1− n

− r2

4−r2
+o(1)

,

implying that
PA∼Uniform(O(n,R))

(
h̃A(xi) = h̃A(xj)

)
→ 1 as n → ∞.

Hence, no fixed p2 < 1 can serve as an upper bound on the collision probability for all such “far
apart” pairs.

Proof. The theorem follows with the same construction as Theorem 3.2, with the difference being to
use the lower bound in the cross-polytope LSH instead.

As a corollary of Theorems 3.2 and 3.3, we can informally state that there are no good scaled hash
families for p ̸= 2.
Corollary 3.4. Let p ≥ 1 with p ̸= 2. Then the "scaled-rotation" hash family

H̃ =
{
h̃A = µ ◦ πp ◦ rA : A ∈ O(n,R)

}
on the ℓp–sphere Sn−1

p cannot be (r, cr, p1, p2)–sensitive for any fixed constants p1, p2 ∈ (0, 1):

• If p < 2, then for every r ∈ (0, 2) there is no choice of p1 > 0 such that

PA

(
h̃A(x) = h̃A(y)

)
≥ p1 whenever ∥x− y∥p ≤ r.

• If p > 2, then for every r ∈ (0, 2) and every c > 1 there is no choice of p2 < 1 such that

PA

(
h̃A(x) = h̃A(y)

)
≤ p2 whenever ∥x− y∥p ≥ c r.

In other words, no nontrivial LSH guarantees can hold for the scaled-rotation scheme on Sn−1
p unless

p = 2.

3.3 Hyperoctahedral Hash Family

In this section, we formally define our signed-permutation hashing scheme for points on the ℓp-sphere.

We wish to construct a hash family H̄ with the locality-sensitive property: points that are closer in ℓp
should have a higher probability of colliding under the hash.
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3.3.1 Group Actions

Definition 3.5. (Group Action) Given a group (G, ∗) and a set S, a group action of G on S is a
function · : G × S → S, denoted by g · s for g ∈ G and s ∈ S, that satisfies the following two
properties:

1. for the identity element e ∈ G, e · s = s for all s ∈ S.

2. for any g, h ∈ G and s ∈ S, (g ∗ h) · s = g · (h · s).
Definition 3.6. (Transitive Group Action) Let G be a group acting on a set S. The action of G on
S is said to be transitive if for every pair of elements s1, s2 ∈ S, there exists at least one element
g ∈ G such that g · s1 = s2.

3.3.2 Hyperoctahedral Group Review

The hyperoctahedral group Bn consists of all signed permutations. In this way, Bn can be viewed as
a subgroup of the orthogonal group O(n,R). Matrices naturally act on Rn by left multiplication, so
there is a well-defined group action of Bn of Rn. We are interested in Bn because it is the group of
symmetries of the ℓp-sphere for p ̸= 2.

Each element A of Bn can be decomposed as A = SP where S and P are signature and permutation
matrices, respectively. Because there are 2n signature matrices, n! permutation matrices, and
(S1, P1) ̸= (S2, P2) implies S1P1 ̸= S2P2, there are |Bn| = 2n · n! possible such transformations.
Because Bn is finite (unlike O(d,R)), then Bn is not transitive. In fact, this lack of a continuous
transformation, which is exhibited for the symmetries of the Euclidean sphere, will be why a hash
family scheme using the symmetries of the ℓp-sphere for p ̸= 2 will fail.

3.3.3 Theoretical Analysis

In this section, we show that the signed-permutation hash family fails to exhibit the locality-sensitive
property under the ℓ1-norm. Specifically, we prove that we can construct arbitrarily bad examples.

In Section 3, we constructed the hash function using the hyperoctahedral group. Specifically, for any
A ∈ Bn, we defined

h̄A := µ ◦ rA.
Lemma 3.7. Let A1, A2 ∈ Bn be any two signed-permutation matrices, and set

R := A2 A
−1
1 ∈ Bn.

Then,
h̄A2

= R ◦ h̄A1
.

In particular, up to a relabeling of the 2n output buckets by the signed-permutation R, the two hash
functions coincide.

Proof. Recall that for any A ∈ Bn and any y ∈ Rn, one has

µ(Ay) = Aµ(y),

because A merely permutes and possibly flips the signs of the coordinates, and the quantizer µ picks
out the coordinate of largest absolute value together with its sign. Concretely, if µ(y) = sgn(yj)ej
with j = argmaxk |yk|, then

(Ay)i = si yπ(i), so argmax
i

|(Ay)i| = π−1(j),

and hence

µ(Ay) = sgn
(
(Ay)π−1(j)

)
eπ−1(j) = sπ−1(j)sgn(yj) eπ−1(j) = A

(
sgn(yj)ej

)
= Aµ(y).

It follows that for any x ∈ Sn−1
p ,

h̄A2(x) = µ
(
A2 x

)
= µ

(
RA1 x

)
= Rµ

(
A1 x

)
= R

(
h̄A1(x)

)
,

as desired.
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Applying Lemma 3.7 to any A, I ∈ Bn where I is the identity matrix, then

h̄A = h̄I = µ ◦ rI ≡ µ.

In other words, the symmetry fails to apply any meaningful transformation.

Theorem 3.8. Let
H̄ = {h̄A : A ∈ Bn}

be the hash family generated by the hyperoctahedral group on Sn−1
p (any p ̸= 2). Then H̄ induces

exactly one partition of the sphere: namely, the one given by h̄I(x) = µ(x). In particular, for any
two points x, y and any choice of A,

h̄A(x) = h̄A(y) ⇐⇒ µ(x) = µ(y),

so the collision probability PrA∼Uniform(Bn)[h̄A(x) = h̄A(y)] is either 0 or 1, independent of the
distance ∥x− y∥p. Consequently, H cannot be locality-sensitive under the ℓp–metric for any p ̸= 2.

Proof. By Lemma 3.7, all h̄A induce the same partition, namely that of h̄I = µ. Hence for every
fixed pair (x, y),

Pr
A∼Bn

[
h̄A(x) = h̄A(y)

]
=

{
1, µ(x) = µ(y),

0, µ(x) ̸= µ(y).

But on Sn−1
p one can always find arbitrarily close points x, y with µ(x) ̸= µ(y) (or arbitrarily far

points with µ(x) = µ(y)), so no nontrivial (r, cr, p1, p2)-sensitivity can hold.

4 Conclusion and Future Work

In this paper, we have shown that two of the most direct attempts to generalize the Euclidean
cross-polytope LSH to arbitrary ℓp-spheres (p ̸= 2)—namely, (i) the scaled-rotation scheme and
(ii) the hyperoctahedral sampling scheme—both fail to achieve any nontrivial (r, cr)-sensitivity.
For p < 2, the scaled-rotation family can drive the collision probability of arbitrarily close points
to zero, and for p > 2 it forces distant points to collide with overwhelming probability; while the
hyperoctahedral family induces exactly one partition (up to relabeling), so collision events become
independent of distance. These negative results demonstrate that any successful LSH for p ̸= 2 must
depart from these symmetry-based constructions.

Looking ahead, several promising avenues remain open:

• Partial or adaptive quantization. Rather than snapping to a single dominant coordinate,
might multi-coordinate or hierarchical quantizers yield genuine sensitivity on ℓp spheres?

• Alternative group actions. Beyond orthogonal or signed-permutation groups, are there
other natural transformations of Rn whose induced partitions respect ℓp geometry in a
locality-sensitive way?

We hope that this work—by clarifying which paths are not viable—will help focus future efforts on
more nuanced, data-adaptive, or hybrid approaches to similarity search beyond the Euclidean realm.
Understanding and harnessing the geometry of non-Euclidean norms remains an exciting challenge
for both theory and practice.
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A Appendix

Proposition A.1. Let x ∈ Rn \ {0} and p > 1. Consider the problem

min
y∈Rn

∥y − x∥p s.t. ∥y∥p = 1.

Then the unique solution is obtained by

y∗ =
x

∥x∥p
.

Proof. Let y be any feasible point, so ∥y∥p = 1. By the triangle inequality,

∥x∥p = ∥(x− y) + y∥p ≤ ∥x− y∥p + ∥y∥p = ∥x− y∥p + 1,

which rearranges to
∥x− y∥p ≥ ∥x∥p − 1.

On the other hand, swapping x and y gives ∥y − x∥p ≥ 1− ∥x∥p, so altogether

∥y − x∥p ≥
∣∣∥x∥p − 1

∣∣.
This implies that no feasible y can achieve a smaller objective value than

∣∣∥x∥p − 1
∣∣.

Next, let
x = ∥x∥p x̂, where x̂ =

x

∥x∥p
,

so that ∥x̂∥p = 1. Then∥∥x̂− x
∥∥
p
=

∥∥x̂− ∥x∥p x̂
∥∥
p
=

∣∣ 1− ∥x∥p
∣∣ ∥x̂∥p =

∣∣∥x∥p − 1
∣∣.

Hence y = x̂ attains the lower bound, implying its optimality.

Finally, if p > 1, the function y 7→ ∥y − x∥p is strictly convex, so the minimizer is unique.
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