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Abstract

In this work, we explore two natural generalizations of the cross-polytope
locality-sensitive hashing scheme of Andoni et al. [2]] from the Euclidean sphere
to arbitrary £,-spheres: (1) a scaled-rotation approach that rotates points via ran-
dom orthogonal matrices, reprojects them to the £,-sphere, and quantizes to the
dominant coordinate; and (2) a hyperoctahedral sampling approach that replaces
the orthogonal group by the symmetry group of the £,,-sphere. We prove that both
families fail for every p # 2: when p < 2 the scaled-rotation scheme allows arbi-
trarily close points to collide with vanishing probability, while for p > 2 it forces
far-apart points to collide with probability above a threshold—so no nontrivial
(r, cr)-sensitivity holds—and that the hyperoctahedral scheme induces exactly one
partition (up to relabeling), making collision probabilities independent of distance.
These negative results precisely delineate the limits of direct cross-polytope gen-
eralizations for ¢,-spheres with p # 2, providing insights into the challenges of
hashing techniques in the £,,-sphere.

1 Introduction

Approximate nearest-neighbor (ANN) search is a technique in large-scale machine learning, data
mining, and information retrieval. In high dimensions, locality-sensitive hashing (LSH) provides a
powerful framework: one designs a family of hash functions so that "nearby" points collide with
higher probability than "far apart” points, and then uses these collisions to achieve sublinear-time
queries [6]. LSH is well understood for Hamming distance and the Euclidean (¢2) norm: for angular
distance on the unit sphere, the cross-polytope scheme of Andoni et al. [2] achieves the asymptotically

optimal exponent
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matching known lower bounds [[1]. Moreover, it is practical—empirical evaluations show substantial
speedups over classic hyperplane-based hashes in real-world datasets. Given its strong theoretical
guarantees and empirical performance on the Euclidean sphere, one might reasonably expect that
simply swapping in an ¢,,-projection or replacing O(n, R) with the appropriate symmetry group for
the general £,,-sphere would preserve locality-sensitive behavior. Surprisingly, as this paper shows,
these most natural extensions break down completely for every p # 2, revealing deeper geometric
barriers to non-Euclidean LSH.

In this work we investigate two natural attempts to extend the cross-polytope LSH from the Euclidean
sphere S;" ! to the general £,-sphere Sl?’l:

1. Scaled-rotation: apply a random orthogonal matrix A € O(n,R)tox € S;_l, renormalize
back to the £,,-sphere, and then quantize to the largest-coordinate corner of the ¢; ball;



2. Hyperoctahedral sampling: replace O(n, R) by the symmetry group of S;‘_l, and quantize
directly without any continuous reprojection.

Both approaches mirror the Euclidean construction, preserve the spirit of random mixing, and respect
the natural symmetries of the ¢, sphere. However, in contrast to the p = 2 case, we prove that neither
family can satisfy any nontrivial LSH sensitivity for any p # 2.

Our contributions. We establish three impossibility results:

* For p < 2, the scaled-rotation scheme fails to bring nearby points into collision with non-
vanishing probability; in fact, one can exhibit pairs at arbitrarily small £, distance whose
collision probability tends to zero as the dimension grows.

» For p > 2, the same construction makes arbitrarily distant points collide with probability
above a threshold —again precluding any valid (r, cr)-sensitivity trade-off.

* The hyperoctahedral scheme is even more degenerate: every signed-permutation map
induces the same partition of Sg"_l (up to relabeling), so collision probabilities become
independent of distance (either O or 1).

These impossibility results rule out only the most direct extensions of cross-polytope LSH to £,
spheres for p # 2, and leave open the prospect that more sophisticated or data-adaptive hashing
schemes may still succeed in this setting.

Paper organization. In Section [2| we review LSH basics and the Euclidean cross-polytope construc-
tion. Section [3|defines the scaled-rotation and hyperoctahedral hash families on S;’l, and presents
our counterexample constructions to prove the three impossibility theorems. We conclude in Section
M with a discussion of open directions toward non-Euclidean LSH schemes.

2 Background and Related Work

Locality-Sensitive Hashing (LSH). Locality-sensitive hashing (LSH) circumvents the curse of
dimensionality in nearest-neighbor search by trading off space for query time. For a metric space
(R™, d) and parameters r > 0, ¢ > 1, a hash family H is (r, cr, p1, p2)-sensitive if for all x,y € R™:

Py (h(xz) = h(y)) > p1  wheneverd(z,y) <r,
Py (h(z) = h(y)) < ps wheneverd(x,y) > cr,

with p; > po. Such a family yields a data structure for (¢, 7)-ANN with sublinear query time [6].
Classic LSH constructions exist for Hamming space [6], Jaccard similarity [3]], the Euclidean (¢5)
norm [2]], the cosine similarity and earthmover distance via the hyperplane LSH [4]], and the £, norm
via p-stable projections [3].

LSH for Cosine Similarity. Charikar’s hyperplane LSH [4] hashes by random sign of dot-
products, giving collision probabilities tied to cosine similarity. More recent cosine similarity
LSH schemes—most notably the cross-polytope family of Andoni et al. [2]—rotate points randomly
and quantize to the nearest vertex of an ¢;-sphere, achieving the asymptotically optimal exponent for
angular distance. Multiprobe and fast-rotation variants further improve practical performance.

Our contributions. This work shows that two of the most natural extensions of Euclidean cross-
polytope LSH to the ¢, sphere both fail for every p # 2. We analyze:

* Scaled-rotation: randomly rotate any £,-unit vector, project back to the £, sphere, then
quantize to the dominant coordinate.

* Hyperoctahedral sampling: replace continuous rotations by the finite signed-permutation
group (the hyperoctahedral group) and quantize directly.

We prove that for p < 2 the scaled-rotation scheme yields vanishing collision probability on arbitrarily
close points, and for p > 2 it forces distant points to collide with probability above a threshold; and
that the hyperoctahedral scheme induces a single degenerate partition independent of distance. These
negative results rule out only the simplest generalizations of cross-polytope hashing and leave open
the search for more sophisticated or data-adaptive LSH constructions in non-Euclidean norms.



Figure 1: Unit ¢,-spheres for p € {1,1.5,2,3,6,00} in R

3 Generalized Cross-Polytope Hash Families

Let S;}*l be the £,-sphere in n-dimension. Examples of S; for varying values of p can be found in

Figure |1} Andoni et al. [2] propose a cross-polytope LSH scheme on the Euclidean sphere Sg_l.
Given a random orthogonal matrix A € O(n, R), they define the hash function
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where 74 : R" — R" applies A to the vector # € R” and the quantizer y1 : R™ \ {0} — ST~ is
given by
n(y) = sgn(y;)ej, j = argmax |y,
1<k<n

and e; is the j-th standard basis vector. Then we have that
H:={ha:AcO(n,R)}

defines a family of hash functions.

Intuition Behind 5 4
The process behind h 4 can be understood in three simple steps:

1. Random Rotation: Multiplying by A "spins" the entire sphere. Nearby points stay close, but
their coordinates get mixed up independently of the data.

2. Dominant Axis Selection: After rotation, inspect the resulting vector y = Ax. Identify
which coordinate y; has the largest absolute value. Geometrically, this finds the single axis
along which the rotated point sticks out the most.

3. Snapping to a Corner: Record the sign of that dominant coordinate (positive or negative)
and map y exactly to the corresponding corner of the cross-polytope, namely +e;. Figure@]
shows such a cross-polytope for n = 4. This collapses the continuous sphere onto the 2n
vertices of the /1 unit sphere.

Two points with a small angle between them will, after the same random rotation, typically share
both the index and sign of their dominant coordinate, and hence collide under & 4. Points far apart on
the sphere are unlikely to do so. Repeating this with multiple independent A’s yields the usual LSH
guarantees: high collision probability for similar points, low for dissimilar.

3.1 Generalization to the /,-Sphere

To extend this to the ,-sphere S;}_l for p # 2, one can modify either the rotation or the quantization
stepinhyg = pory:

1. Scaled Rotation. Apply A € O(n,R) toxz € ngl, then project back to the £,,-sphere via
the scaling map
Yy

m(y) =
"W =L



Figure 2: Cross-polytope (i.e. £1-sphere) for n = 4, by Robert Webb (Stella software), Wikimedia
Commons (CC BY-SA 3.0) commons.wikimedia.org/wiki/File:Schlegel_wireframe_16-cell.png.

and finally quantize with p:
ha=pom,ora.
?s we show in Proposition p 18 exactly the nearest-point projection onto Sg’l in the
» norm.

2. Hyperoctahedral Sampling. Replace the full orthogonal group by the symmetry group G,
of S;}_l since the orthogonal group is the symmetry group of ngl. Then

ha=pora
for A € G,,.
3.2 Scaled Hash Family
Lemma 3.1. Foranyp > 1,
HoTp = M
Proof. 1t suffices to observe that scaling does not change the maximum absolute coordinate. O

Theorem 3.2. Let p € [1,2). Then for any r € (0,2), there exists N € N such that for alln > N
one can find x1,...,Ty, € Sg_l with ||x; — x|, < r but

~ ~ ’7‘2

IP)ANUniform(O(n,]R)) (hA(x’L) = hA(.’E])) < nierO(l)’
implying that ) )
P A~ Uniform(0(n,&)) (ha(xi) = ha(z;)) = 0asn — oo.

In particular, no fixed p1 > 0 can serve as a lower bound on the collision probability for all such
"nearby" pairs.

Proof. Tt suffices to find x,y € S~" such that ||z — y||,, < r and ]P’ANU(O(n,R)(iLA(x) =ha(y)) <

7_2
n~ =2 W Consider v := ( ) € R"and a := (¢, —¢,0,...,0) € R" for e > 0. Then

we know that
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Given r € (0,2) and n > 1, with p < 2. We want to show there exists e such that [lu} — u. ||, <7
and [|uj — uy ||z > r. By continuity of f,(€) := [|u, — u, ||, and because f,(€) < f2(€), we know

that there exists some € > 0 such that [Ju,} — u,, ||, < and ug —uy |2 > 7.
By Lemma we know that i 4 = pompors = pors = ha. Then applying Theorem 1 of [2] on
cross-polytope LSH gives

Pavommy (ha(wl) = ha(u;)) = P(u(Aud) = p(Auy)) <n” w200,

2

Since r € (0, 2) is a fixed constant, the exponent ;™ is positive, then

2

Pr(ha(uf) = ha(u;)) <n 770 0 (n— o),

Thus, no lower bound p; > 0 can hold for all such "nearby" pairs, and the scaled-rotation scheme
fails to be (r, cr)-sensitive on S;~! when p < 2. O

Theorem 3.3. Let p € (2,00]. Then for any r € (0,2) and any ¢ > 1, there exists N € N such that
foralln > N one can find 1, . .., @y, € Si~ 1 with ||a; — x|, > cr but

2

]PANUniform(O(n,R)) (iLA(xz) = BA(:EJ)) > 1- n_m+0(1)7

implying that
P A~ Unitorm(0(n,k)) (ha(x:) = ha(z;)) = Lasn — oo.

Hence, no fixed p» < 1 can serve as an upper bound on the collision probability for all such “far
apart” pairs.

Proof. The theorem follows with the same construction as Theorem [3.2] with the difference being to
use the lower bound in the cross-polytope LSH instead. O

As a corollary of Theorems [3.2]and [3.3] we can informally state that there are no good scaled hash
families for p # 2.

Corollary 3.4. Let p > 1 with p # 2. Then the "scaled-rotation" hash family
H = {?LA =pomora:AeO(nR)}
on the {,—sphere S;“l cannot be (r, cr, p1, p2)-sensitive for any fixed constants p1,p2 € (0,1):
* If p < 2, then for every r € (0, 2) there is no choice of p1 > 0 such that

]P’A(EA(:E) = iLA(y)) > p1 whenever ||z —y||, <.

o Ifp > 2, then for every r € (0,2) and every ¢ > 1 there is no choice of ps < 1 such that

IP’A(BA(x) = fLA(y)) < pa whenever ||x — y|, > cr.

In other words, no nontrivial LSH guarantees can hold for the scaled-rotation scheme on S;L’l unless
p=2.
3.3 Hyperoctahedral Hash Family

In this section, we formally define our signed-permutation hashing scheme for points on the £,-sphere.

We wish to construct a hash family # with the locality-sensitive property: points that are closer in ¢,
should have a higher probability of colliding under the hash.



3.3.1 Group Actions

Definition 3.5. (Group Action) Given a group (G, x) and a set S, a group action of G on S is a
function - : G x S — S, denoted by g - s for g € G and s € S, that satisfies the following two
properties:

1. for the identity elemente € G, e- s = sforall s € S.

2. foranyg,h € Gands € S, (gxh)-s=g-(h-s).

Definition 3.6. (Transitive Group Action) Let G be a group acting on a set S. The action of G on
S is said to be transitive if for every pair of elements s1, sy € S, there exists at least one element
g € G such that g - s1 = so.

3.3.2 Hyperoctahedral Group Review

The hyperoctahedral group B,, consists of all signed permutations. In this way, B,, can be viewed as
a subgroup of the orthogonal group O(n, R). Matrices naturally act on R™ by left multiplication, so
there is a well-defined group action of B,, of R™. We are interested in B,, because it is the group of
symmetries of the £,,-sphere for p # 2.

Each element A of B,, can be decomposed as A = SP where S and P are signature and permutation
matrices, respectively. Because there are 2™ signature matrices, n! permutation matrices, and
(S1, P1) # (Sa, P2) implies S1.P; # SaPs, there are |B,,| = 2™ - n! possible such transformations.
Because B,, is finite (unlike O(d, R)), then B,, is not transitive. In fact, this lack of a continuous
transformation, which is exhibited for the symmetries of the Euclidean sphere, will be why a hash
family scheme using the symmetries of the ¢,,-sphere for p # 2 will fail.

3.3.3 Theoretical Analysis

In this section, we show that the signed-permutation hash family fails to exhibit the locality-sensitive
property under the ¢1-norm. Specifically, we prove that we can construct arbitrarily bad examples.

In Section 3] we constructed the hash function using the hyperoctahedral group. Specifically, for any
A € B,,, we defined

h AI=[OTA.
Lemma 3.7. Let A1, As € B,, be any two signed-permutation matrices, and set

R:=A; A{' € B,.

Then, ~ ~
hAz = ROhA1~

In particular, up to a relabeling of the 2n output buckets by the signed-permutation R, the two hash
functions coincide.

Proof. Recall that for any A € B,, and any y € R", one has
u(Ay) = Aply),

because A merely permutes and possibly flips the signs of the coordinates, and the quantizer y picks
out the coordinate of largest absolute value together with its sign. Concretely, if 11(y) = sgn(y;)e;
with j = argmax;, |y, then

(Ay)i = siyn@p), so argmax|(Ay)| = 7 '(j),
and hence
1(Ay) = sgu((Ay)n-1(j)) €x—1(j) = Sn—1(j)s80(y;) ex—1(jy = A(sgn(y;)e;) = Ap(y).
It follows that for any x € Sg’l,

ha,(z) = p(As2) = p(R A1 2) = Ru(Ar ) = R(ha, (2)),
as desired. O



Applying Lemma[3.7)to any A, € B,, where I is the identity matrix, then
ITLA:B[:/,LO’I“IE/,L.

In other words, the symmetry fails to apply any meaningful transformation.

Theorem 3.8. Let ~ ~
H = {ha:A€B,}
be the hash family generated by the hyperoctahedral group on S;‘_l (any p # 2). Then H induces

exactly one partition of the sphere: namely, the one given by hi(z) = u(z). In particular, for any
two points x,y and any choice of A,

ha(x) =haly) <= p(x) = py),

so the collision probability Pr s Uniform(B,) [ha(z) = ha(y)] is either 0 or 1, independent of the
distance ||z — y||,. Consequently, H cannot be locality-sensitive under the {,,—metric for any p # 2.

Proof. By Lemma all h 4 induce the same partition, namely that of A; = p. Hence for every
fixed pair (z,y),

- - L (@) = pwy),

Pr |ha(z) =haly)| = {
A~B, [haf) )] 0, (@) # pn(y).
But on S7'~! one can always find arbitrarily close points x,y with pu(x) # p(y) (or arbitrarily far
points with () = u(y)), so no nontrivial (r, cr, p1, p2)-sensitivity can hold. O

4 Conclusion and Future Work

In this paper, we have shown that two of the most direct attempts to generalize the Euclidean
cross-polytope LSH to arbitrary ¢,-spheres (p # 2)—namely, (i) the scaled-rotation scheme and
(ii) the hyperoctahedral sampling scheme—both fail to achieve any nontrivial (r, cr)-sensitivity.
For p < 2, the scaled-rotation family can drive the collision probability of arbitrarily close points
to zero, and for p > 2 it forces distant points to collide with overwhelming probability; while the
hyperoctahedral family induces exactly one partition (up to relabeling), so collision events become
independent of distance. These negative results demonstrate that any successful LSH for p # 2 must
depart from these symmetry-based constructions.

Looking ahead, several promising avenues remain open:

* Partial or adaptive quantization. Rather than snapping to a single dominant coordinate,
might multi-coordinate or hierarchical quantizers yield genuine sensitivity on ¢, spheres?

* Alternative group actions. Beyond orthogonal or signed-permutation groups, are there
other natural transformations of R™ whose induced partitions respect £, geometry in a
locality-sensitive way?

We hope that this work—>by clarifying which paths are not viable—will help focus future efforts on
more nuanced, data-adaptive, or hybrid approaches to similarity search beyond the Euclidean realm.
Understanding and harnessing the geometry of non-Euclidean norms remains an exciting challenge
for both theory and practice.
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A Appendix

Proposition A.1. Let x € R"™ \ {0} and p > 1. Consider the problem

i - 1 =1.
£$|w zllp st lylp

Then the unique solution is obtained by
x

B ||37Hp

y*
Proof. Let y be any feasible point, so ||y||, = 1. By the triangle inequality,

lzllp = Itz = y) + yllp <[l =yllp + lyll, =l = yllp + 1,

which rearranges to
e =ylly = llzll, - 1.

On the other hand, swapping z and y gives ||y — z||, > 1 — ||z]|,. so altogether
ly = llp > [llzllp = 1]-

This implies that no feasible y can achieve a smaller objective value than ’ llzll, — 1 ‘

Next, let
x = |z|,& where I = L
n 2l
so that ||Z||, = 1. Then
-z, = [|& — el ], = | 1 = lally| 2]}, = [l2ll, — 1]
Hence y = £ attains the lower bound, implying its optimality.
Finally, if p > 1, the function y — ||y — x||, is strictly convex, so the minimizer is unique. O
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